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The vortex: complex Hopf bundle and Morse theory 

Luis J Boya and Juan Mateos 
Departamento de Fisica Tebrica, Universidad de Salamanca, Salamanca, Spain 

Received 18 May 1981, in final form 24 May 1982 

Abstract. We interpret the vortex solution of Nielsen-Olesen as a complex vector bundle 
associated to the second Hopf sphere bundle (analogously to consider the kink of the first 
Hopf bundle); the peculiarity of the soliton behaviour of the two-dimensional vortex stems 
from the non-trivial character of the fibration; the electromagnetic and scalar (Higgs) field 
are the connection and the section in this bundle respectively. 

Properties of this mathematical construction have their natural physical translation; 
for example the complex structure of the sphere S2 leads to a closed (Kahler) two-form, 
which has physical implications, and the fact that the vortex can be considered as the 
square root of the tangent bundle to the sphere implies a spinor nature for the vortex. 

A Morse theory of critical points suggests some Atiyah-Singer type of theorems, which 
have bearing on the stability of the multi-vortex solutions. 

We finish by a geometrical interpretation of the fxactional charges found recently. 

1. Introduction 

Peculiar solutions to classical field equations, called generically solitons, have been 
intensively studied in recent years in particle physics (Coleman 1977); they arise most 
naturally in some theories exhibiting spontaneous symmetry breakdown. More solid 
ground for broken symmetries is provided in the framework of fibre bundles (rather 
than a shrewd choice of the potential) since in the fibre bundle the topological charge 
is another name for the characteristic number of the bundle and the sections and 
connections become the matter (Higgs) and gauge fields, respectively; and the physical 
gauge group is naturally the structure group of the bundle. The first example was 
neatly worked out by Wu and Yang (1975). 

In this paper, which follows a short note (Boya and Mateos 1980a, b), we concen- 
trate on the mathematical structure of a particular two-dimensional soliton (the vortex 
of Nielsen and Olesen (1973)) by describing the scalar field in it as a definite function 
(section) in a non-trivial vector bundle over the (compactified) spatial part of a 
space-time: the ultimate reason for solitons seems to be the twisted ‘wedding’ of the 
internal symmetry group G (the gauge or structural group) with the (topological 
non-trivial) manifold representing space-time. 

This paper is organised as follows: in 092 and 3 the bundle nature is explained 
and characterised as the associated one-dimensional complex vector bundle of the 
second Hopf sphere bundle with exact sequence p : S’ + S3 + S2. We show how the 
boundary conditions give rise to the non-trivial fibration, how the localisation of the 
source of the magnetic field leads to an asymptotically flat connection, etc. The 
complex structure, spinor character and characteristic class give mathematically sound 
grounds for the stability conditions, statistics, and topological charge, respectively. In 
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particular, the quantisation of the total flux is just the integral realisation of the (first) 
Chern class of the bundle (Gauss-Bonnet theorem). 

Sections 4 and 5 are devoted to stability considerations of the vortex equations 
by means of the Morse theory (e.g. Milnor 1963); in the limit y = e 2 / A  = 1 the 
saturation of the Bogomolny bound (Bogomolny 1976) leads to first-order equations 
related to the Kahler structure (Perelomov 1978), subsequent to the complex structure 
mentioned above. Atiyah-Singer type theorems (Palais 1965), set up in § 6, strongly 
suggest stability of the multivortex solution. Finally in § 7 we establish a relationship 
between the nature of the spin bundle associated to the vortex and the recently found 
fractional charges for fermions (Jackiw and Schrieffer 1981). 

Extension of these considerations for monopoles and instantons are left for a later 
publication. 

2. The bundle framework 

In this section we are to specify the bundle structure appropriate to describe the 
vortex of Nielsen and Olesen (1973). We remember that the vortex is a static solution 
of a system of field equations in (2 + 1) space-time describing scalar electrodynamics; 
the vector potential A = A ,  becomes a pure gauge at spatial infinity and the matter 
field takes there a non-zero value (because of spontaneous symmetry breakdown). 

This suggests the following construction of a bundle with connection: as base space, 
we take it to be S 2 ,  the bi-dimensional sphere, as a prolongation of the ordinary space 
part R 2  with the one-point compactification, S 2  = R 2  plus {a}, with {a} the set of a 
point at infinity. We can even think of a (conformally invariant) stereographic projec- 
tion S 2  t* R 2  U {a} and write the field equations in S 2 ,  but we shall not bother to do 
that, because the system is not conformally invariant and the form of the equations 
would change with the common ones in R 2 .  Of course, the topological structure 
which emerges from defining the fields in R 2  with the vortex boundary conditions 
(which maintain finite energy) is the same as the topology obtained by defining fields 
on s'. 

Over S 2  we now erect the so-called complex Hopf bundle (see e.g. Steenrod 1951), 
which we designate p : P ( S 2 ,  SI). The bundle p is characterised in the following way: 
given a covering of S 2  by open sets {U+, U-} ,  excluding respectively the south and 
north poles, with an overlap homeomorph to the open cylindrical strip, U+ n U- = 
S' x (0 ,  l ) ,  the bundle gets fixed once a transition function U ,  n U- + G, where G is 
the structure group homeomorph to the fibre, is given. The group G is here U(1) = S ' ,  
the gauge group for electromagnetism (Weyll923). Because the strip (0, 1) is contract- 
ible, in order to fix (the class of equivalence of) the bundle it is enough to give a 
homotopy class of maps S' + S' .  Our bundle will be 'the class one' ('windunghzal' = 
winding number = 1) in the set of maps S' + S ' ,  which is precisely the mathematical 
definition of the second (complex) Hopf sphere bundle. If S,:  U ,  + 7 ~ ; '  (U,) L- U, x G 
are the trivialising sections, the transition function, S+ = g + - S - ,  g+-: S' x (0, 1) + G, 
is g+-(O,  x )  = eie. The total space of the bundle is S 3 .  The Hopf construction is: take 
all quaternions (=R4) of norm one ( - S 3 ) ,  modulus unit complex numbers (=SI); 
the quotient is a sphere S 2 ,  /.? : S' + S 3  + S 2 .  

The associated vector bundle is obtained through a linear representation 
D :  G-vector space; here let us take D :  U(l )  + R 2  = C, D(g)Z = e'", 2 E C. Let 
E = E ( [ )  be the total space of this complex vector bundle, E ( [ )  = S3 x C mod G(= S')  
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and rE: E + S 2  the projection. Sections in this bundle (CI:S2+E(t), rEo$ =id.+ are 
the objects of primary physical importance; in coordinates, 4 appears as a couple of 
functions $*: U, + C that are gauge connecting in the overlap: 

*+(U) =D(g+-)*-(u), u E U+n U- (2.1) 

which can be seen as the gauge transformation of the scalar (matter) complex fields. 
As the bundle is non-trivial there are no sections without zeros. The sections will be 
identified with the Higgs field, which have to be zero somewhere. 

We also recall that a connection in a bundle P(B, G) is given by a G-Lie-algebra- 
valued one-form on P, say 0. For G = U(1), Lie-algebra = R, we have usual one- 
forms, i.e. R-valued: if S ,  are the trivialising sections S 2  = base + S3 = total space of 
the principal bundle, as before, the pull-back A ,  = ST O are one-forms on the base 
manifold, identical with the ordinary physical electromagnetic vector potential, A,:, 
,U = 1,2 :  because the bundle is non-trivial, we need to specify A,  independently in 
two patches, and for points in the overlap, z E U ,  n U- we have (Wu and Yang 1975) 

A + ( z ) = A - ( z ) + g ; ! ( z ) d g + - ( z )  (2.2) 

which is the usual gauge transformation of the vector potential. 
The curvature il =DO is an (R-valued) two-form on P = S 3 ,  which gives the unique 

field strength F = S * R = d A :  the shift in the overlap is zero for F because dd =0: 
the electromagnetic field strength is a well defined two-form over the whole base 
manifold S 2 ,  and it is (because U(1) is abelian) gauge invariant. As is well known, F 
as curvature measures to what extent the covariant deriuatiue D@ = (3 - iA)@ of the 
sections in the associated vector bundle is path dependent. 

Our bundle p possesses also a complex structure. We remember (Milnor 1974) 
that a complex structure J on a real 2n-dimensional vector bundle is a continuous 
function J : E ( t ) + E ( [ )  linear into each fibre and anti-involutory: J =-id; 
equivalently, the structure group, in general GL(2n ; R) ,  reduces to GL(n ; C). Our 
bundle p is 'already' reduced, because U(1) = SO(2) c O ( 2 ) ~  GL(2, R )  and in fact 
the further reduction GL(1, C) = C* + U(l)  implies also a Hermitian metric h, that is, 
a Hermitian form on each fibre. 

The construction of h goes as follows. In S 2  = 1 -D complex projective space = 
CP', with points z E S 2 ,  we have the standard metric g = ds2 = a 2  (de2 +sin2 e d4'), 
which by complexification and stereographic projection gives 

2 

(2.3) 

this induces the Hermitian metric in E(.$) as 

The antisymmetric part of h gives us a symplectic structure, that is a two-form 
(called the Kuhler form of the Hermitian metric), 

a ,  b = 1 , 2  (2.4) 
dfihdv . d$hdd d 4 " h d 4 b  

(1 + Iv I2y = (1 + $4)2 = (1 + 4"r$a)2 ; 
W = i  

with r E 1 ( z )  = V ( z )  = 4 ( z )  = d ' ( z )  +i4'(z) for some section (or Higgs or matter field) 
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q5 : S2+ E@).  This Kahler form W is here closed, dw = 0, or 

a 1 a 1 --. -. 
(34" (1+q5"q5")2-aq5b (l+q5"q5")2 

and E(.$) is a Kahler manifold. 

( 2 . 5 )  

3. Characteristic class 

Characteristic classes are topological invariants of vector bundles, which can be 
obtained in various ways and are fundamental in distinguishing inequivalent bundles 
(Milnor 1974). For complex n-dimensional bundles we have k ( k  = 1 . . . n)  Chern 
classes, so here we just have C1 = Cl(p), the first; it can be defined axiomatically 
Cl(p) = 1 (Hirzebruch 1966) or computed from the t e c h  cohomology characterisation 
of the bundle. From the physical point of view it is a topological quantum number. 

The set of equivalence classes of principal G-bundles over a manifold B is a 
cohomology set, k ' ( B ,  G) ( " for Cech). For B = S", however, it is a standard result 
that f?'(S", G) = T ~ " - ~ ( G ) ,  where rk(X) is the kth homotopy group of space X (this 
follows easily from the discussion of Q 2 on maps (0, l ) x S ' + G ) .  Here of course 
.rrl(U(l)) = n-l(S') = 2, and the n realised by a particular (G = U(1), B = S 2 )  bundle is 
its Chern class; here again Cl(p) = 1 as follows from the definition of the second Hopf 
sphere bundle. Another proof comes from the identityk'(B, G = S ' )  = H 2 ( B ,  G = Z ) ,  
which comes from RI2 = S1 and contractibility of R ; as the sphere S 2  is connected 
(ro = 0) and simply connected ( r l  = 0), it follows easily that H 2 ( S 2 )  = r2 (S2)  = 2. 

There is, moreover, a differential-integral characterisation of Chern classes, which 
has considerable physical significance. The (first) Chern class of G-bundle over a 
two-dimensional manifold, V2,  is given by the integral of the curvature two-form F 
of any connection in the bundle, namely 

which is the content of the Gauss-Bonnet theorem (Milnor 1974). Physically equation 
(3.1) characterises the quantisation of the magnetic flux: in our case F = B = F12;  
V2 = S 2 ,  and Cl([) = (27r-l s s z  F = 1; in this case the first Chern class is the last, and 
(3.1) identifies also the Euler class of the bundle, x ( p )  = Cl@) = 1 (Milnor 1974). 

There are two important mathematical developments from (3.1) with physical 
significance; the first is the dual statement: the Poincark-Hopf theorem asserts (Chern 
1956) that the Euler number ,y can be obtained by counting the 'windungzahl' of 
zeros of sections; it says explicitly 

(3.2) 

where pi ( i  = 1 , 2  . . .) are the zeros of the section in the associate bundle with windung- 
zahl V = V ( p i )  E 2. The physical implication is that scalars (Higgs) in the vortex have 
a zero at the origin and that any n-multivortex solution should have n zeros at least. 

The other statement comes from obtaining (3.1) by a boundary integral. The 
Stokes theorem permits a physicist's interpretation (and calculation) of (3.1). F is 
closed but not exact (as two-form), hence it has a de Rham period; we put F -dA 
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by describing S 2  by {U+,  U-}, leaving U- ‘at infinity’, and then the calculation of the 
total flux gives 

(3.3) 

for the N - 0 vortex. 
This computation of a topological charge by the integration over a boundary occurs 

time and again in physics (for example in general relativity). 
After characterising the first Chern class of the bundle p in all these ways, we 

have that in the set of bundlesP(B, G) withB = S 2  and G = U(1), whichisI?’(S2, S ’ )  = 
H2(S2 ,  2)  = 2, the n = 0 is obviously the trivial bundle S 2  x S ’ ,  the n = 1 is our vortex 
and the n = -1 the ‘antivortex’ (easy to write down; notice that there is no ‘antikink’ 
(Boya and Mateos 1980b)). It is interesting to note that the n = 2 class is precisely 
the tangent bundle of the sphere S2 (if only because , y (S2)  = (bo - b l +  62) (sphere) = 
+1-0 + 1, with b, the Betti numbers given (for example) by de Rham cohomology); 
as this bundle is therefore the square of the vortex (in a precise homological sense), 
the vortex realises a sort of square ro%of the tangent bundle to the sphere; it is more 
’peculiar’ than the sphere, as i = J - l  is an ‘enlargement’ of real numbers; it is so 
reminiscent of Dirac’s 1928 square root of quadratic forms, that we are able to identify 
the vortex bundle as a spinor bundle over the tangent bundle of the sphere (compare 
the identical situation for the sphere S’ in the kink (Boya and Mateos 1980b). 

The tangent bundle T of a Riemann manifold V = V,, has as principal bundle 
T: O ( n )  + B + V,,; the spin map 2 2  + Spin ( n )  + SO(n)  ‘lifts’ 7 to the spinor bundle i: 
Spin ( n )  + B + V,, if V,, is orientable and if there is no topological obstruction (anulation 
of the second Stiefel-Witney class of V,,). In our case V,, = S 2 ,  which is Riemann, 
orientable, and with zero Stiefel-Witney classes; the tangent bundle T :  SO(2) + B = 
SO(3) + S 2  lifts to a covering bundle 

a 
& = S O =  s o  

0 :  s’+ S3=SU(2)+ S 2 = C P 1  
J . 1  

because of the double covering Z 2 +  U(1) = S ’ +  SO(2) = S ’ .  
A spinor field is generally a section in the natural complex vector bundle associated 

with the spinor bundle; it follows that the scalar (Higgs) fields are spinor fields in that 
sense: therefore a natural spinorial character arises for the vortex (physically one 
should expect from this that two classical vortices anticommute; in fact this is so, and 
the proof is similar to the kink case; see later, §4). One should remember also that 
a spinor does not return to its initial value except after two full rotations. 

Notice also the first (or a) Hopf bundle appearing as the first vertical row. Thus 
the diagram reinforces the conception of the kink as a ‘meron’ vortex and the strong 
relation between merons and fermions in two space (Callan et a1 1977). 

4. The vortex field solution 

We now study the vortex equation more closely; in the set of sections r([) of the 
complex vector bundle [ associated to the Hopf bundle p we define the energy (or 
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Euclidean action) functional 

where 4 : S 2  + E ( [ )  is a section, i.e. 4 ( z )  is a complex number, D4 = (3 - iA)4 the 
usual covariant derivative for a connection (potential vector) A = (A,  - iA2)/J5!, 
D+4 = (2 - d)4 ,  U ’  = 2m / A ,  y = Ale2, and m, e, A are the usual mass, gauge coupling 
and quartic coupling of the model. We really work in R 2  but consider the behaviour 
at infinity of the vortex type, namely 

2 

(4.2) 

in polar variables Iz 1 = r + CO and 0 ; these vortex boundary conditions justify the use 
of the bundle 6 with connection A and section 4 as defined in § 2: (4.2) gives a 
pedestrian (or physicist’s) way of stating the topology of the = ((p) vector bundle. 

The variational problem of (4.1) is to find 4 and A such that SS/S+ = SS/SA = 0; 
if we vary in (4.1) first the section 4 for a given connection A we obtain 

( 4 . 3 ~ )  {DO + D ‘ D  +}4 = tyc$ (14 l 2  - 1) 

and likewise varying A for a given section, we get 

4asA - 4a2A - ic& - 2A 14 1’ = 0.  (4.3b) 

If in (4.3) we adopt the boundary conditions (4.2) we ‘obtain’ the vortex solution 
of Nielsen-Olesen. In the general case the solution cannot be given in closed form; 
the original approximate solution (Nielsen and Olesen 1973) has been carefully 
elaborated by de Vega and Schaposnik (1976) and Jacobs and Rebbi (1979). 

Several of the mathematical discussions in 082 and 3 can be read off from (4.3) 
and its solutions; we hope to have clarified the relationship between the boundary 
conditions (4.2) and the specific properties of bundles p and [(p). From the asymptotic 
solution for the section equation 

D 4 = 0  ( r  + (4.4) 

and also from F ( r  + CO) + 0, we immediately obtain the topological quantum number 
as quantised flux, by applying Stokes’ theorem to the field strength (curvature) integral 
(equations (3.1) and (3.3)). 

The angular equation in (4.4) also has quite an interesting physical interpretation 
for in fact, the relation r-’3& = iA& indicates that the vortex is (at least at large 
distances) invariant under combined space rotation and internal rotation, because A B  
(n = 1)  - r - ’&A(@) ,  where A is the map Sk + U(1). This combined rotation invariance 
is a feature common to many other soliton solutions (Boya et a1 1978) and in fact is 
related to the ‘spin out of isospin’ phenomenon of Hasenfratz and ’t Hooft (1976) 
and others: it turns out that the ‘intrinsic’ angular momentum is proportional to the 
topological number. 

Also, in the same way that one would ascribe the normal (vector) representation 
of the SO(2) rotation group ( m  = 1) to the section in the tangent bundle to the sphere 
(Chern class=2), one reinforces the spinorial character of the vortex because the 
‘vector’ representation is made now in a group which is a double covering of the plane 
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rotation group, which would justify an m = t representation, viewed from the original 
group, and in fact if one goes from r = 0 to r + CO in opposite directions, we have 
4 (r  + CO, 0)  = -4(r -+ CO, lr + 0) as with the kink. But this is a 27r rotation, because 
the identification S 2  = R 2  U {CO}. 

One can go further and signal a kind of ‘spin statistics theorem’: in fact, as shown 
by Ezawa (1978), the interchange of two vortices with n = 1 produces a minus sign, 
i.e. they have the character of fermions. 

Finally, we give an application of the complex structure: the topological current 

j ,  = abau4aap4 (4.5) 

aWj, = 

is automatically conserved, because of the Kahler condition: 

ab (aa4 a ap4 b ,  = d(d4 a A d 4  b ,  = o (4.6) 

which is the dw = O  Kahler condition as before, when passing to the sphere metric. 
The Kahler form is closed but not exact for the bundle 6 = [ ( p )  

it shows how the magnetic flux is ‘maintained’ by the Higgs field. 

5. Morse analysis and stability 

We study now the variational problem on the complex vector bundle 6 = t@) from 
the point of view of stability theory. The theory of Morse (Morse 1976, Milnor 1963) 
relates the topology of the manifold with the indices (= number of negative eigenvalues) 
of the Hessian (= second derivatives) of a real function on the manifold in the critical 
(extremal) points. Here our manifold is the set of sections r(t) (over the group of 
gauge transformations, to be precise), and the function is the energy functional (4.1). 

In the set of critical points of the function S we have dS = 0 and the Hessian d2S 
is well defined as a quadratic form: The Morse index of a solution 4 is the dimension 
of the subspace in which the bilinear symmetric form defined by dZS is negatively 
defined. We skip technicalities that arise when continuous symmetries (say gauge 
transformations or translational modes) produce orbits in r(t) (see Bott 1979) and 
merely state that the number of critical points weighted each one by a factor (-l)Ac 
(A, is the Morse index) is greater than or equal to Cl([); in particular the Morse index 
has to be even for the vortex bundle. 

The vortex will be unstable if its Morse index is different from zero (because A, # 0 
would provide imaginary frequencies through which the vortex field would ‘leak out’). 
To analyse stability, we have the standard analysis first given by Bogomolny (1976). 
Let us write S in the form 

s = I~112+llB112+l~112+l~11z (5.1) 

with A = [D]4, B = D+4,  E = 2-1’2(14 1’- 11, and (11 * 11) an Lz  norm. Partial integration 
and taking the limiting value y = 1 (analogous to the ‘Prasad-Sommerfield limit’ in 
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the magnetic monopole soliton of (’t Hooft 1974) yields 

and then we obtain 

(5.3) 

When the equations 

D+q5 = O  

?A -dA +$(/4(*- 1) = 0 (5.4) 
are satisfied, S attains its minimum value, S = 2.rru2C1(5) (Bogomolny 1976). Indeed 
the vortex solution in the y = 1 case satisfies (4.4) (de Vega and Schaposnik 1976), 
the vortex is stable, and its Morse index is zero; for continuity, A,(vortex) = 0 for y 3 1 
also. 

6. Index theorem 

The index theorem (Atiyah and Singer 1963, Atiyah et a1 1973) provides, alternatively 
to Morse theory, a relation between an algebraic index of a differential operator and 
the differential characterisation of topological invariants. If 9 is an elliptic (differential) 
operator, its index is defined by 

(6.1) 

Here we shall take as 9 the first-order differential operator for the small variations 
of equations (5.4). Specifically, if D = a - iA + D +SD = a - i(A +SA) and 4 4 q5 + Sq5 
we have 

ind(9) = dim ker 9 -dim coker 9. 

or, including the complex conjugate equations and taking the Coulomb gauge dA + 
dA = 0, it is 94 = 0 with 
- -  

/ D+ 0 0 -i4\ 

9 can be thought of as an elliptic operator. If 9*=adjo in t  9 and 0+=9*9, 
0- = 99*, we have 

index 9 = dim ker 0, -dim ker U-. (6.4) 

In the ‘heat equation’ approach to the index theorem (Atiyah et a1 1973) we construct 
the function 

(6.5) h,(O+) = E  exp(-A,t) dim rhr = n+ +E’ exp(-A,t) dim rAr 
r r 
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with rA, subspace of A,  eigenmodes, n+ =dim TA,,, XL = L+o. Then 

ind(9)=ht(O+)-h,(O-)=n+-n-  

because 0, and 0- differ only on the null space. 
In order to identify ind(9) with the topological index, we observe that formally 

hr(U+) = Tr exp(-O+t). (6.6) 

Therefore, if 0, = ZAPr is the eigenvalue expansion we have 

hr(O+) = Tr exp -1 A,Prr = Tr 1 P, exp(-Art)) 
( r  ) ( r  

(6.7) 

The most singular part of (6.7) occurs for t -+ 0; namely, this part is dominated by the 
asymptotic expansion, in the sense of the Wilson operator product expansion, by the 
dim = 1 gauge-invariant term F, according to equation (4.23) of Atiyah et a1 (1973). 
Therefore 

dz df  - hYg(lJ+) = J r ( a A  7T -a&+ exp(-Art)+:[z)+,(z)) (6.8) 

and 
1 

ind(9) = hYg(0+)  - hYg(O-) = - dz df  F = 2nC1(5). 
27r 

There exist 2n modes of fluctuations of zero frequency, corresponding to the n complex 
position coordinates of the n vortices. This result implies stability in the y = 1 limit, 
even if we do not know exactly the n-vortex solutions with their centres arbitrarily 
located (Weinberg 1979). The vortices do not interact at the critical y = 1 value, the 
transition point between type-I1 and type-I superconductivity. 

7. Fermions and spin bundles 

The spinor and fermion nature of the vortex illustrates also the recent work of Jackiw 
and Schrieffer (1981) on fractional charged fermions. In the spinor bundle 

Spin (2) 
.1 

Y = C 2 +  Es + S 2  

the vector space Y supports the irreducible complex representation of dimension 2 
of Spin (2) ==(2) = SO(2). A Dirac operator B, = Ws) -+ I'(Es) may be defined in 
it (Palais 1965). This is an elliptic operator, whose index (see $6) is obtained (for 
example) by a spectral equation which is the Dirac equation in an external field, 
namely the connection provided by the vector potential of the vortex (in other words, 
we 'pass' the connection, which is originally given in the principal bundle p : S' + S 3  -+ 

S2 ,  first to the associated bundle of the vortex S'-C, and then to the associated 
bundle of the spinors, S' = Spin(2)o-,C2). 



3450 L J Boya and JMateos 

It is fairly well known how the equation 

D u 4 A  = A4.4 (7.1) 

gives index PI = 1 by studing the zero modes (Nielsen and Schroer 1977), A = 0. To 
see what the electric charge of the fermion ground state is, we proceed as follows: 
the electric charge of the ground state (Dirac sea) is the difference between the charge 
of negative-energy states in the vortex background field 4:  and the zero field 4;  : 

with 

P t : ( z ) = l / ; ; : ( z ) 4 ; i ( z )  (7.2) 

and py the spectral density for the free Dirac equation. The discrete chiral transforma- 
tion anticommutes with the energy, Y S ~ ~ ( Z )  = I , - ~ ( z ) ,  pt: +pVA. Subtracting the com- 
pleteness relation jrm dA (r)GA ( z  ') = S ( z  - z ') for the two cases we obtain 

(7.3) 

and only the zero eigenvalue contributes; as they can be computed from the index 
theorem (e.g. by the heat equation kernel), we finally get (in this 'two-dimensional' 
fibre bundle): 

(7.4) 1 = -3 

thus obtaining that the 'vacuum' state in the background field of a vortex electromag- 
netic field has a half-integer charge: the topological structure produces vacuum 
polarisation : part of the charge 'leaks out' to the background. 

This can be understood perhaps in the light of the considerations of 04: namely 
that the balancing of angular momentum and charge ('isospin' where the group is 

instead of SO(3)) is (i, f), as the vortex configuration itself has invariance under 
combined rotations only; the 'left-over' charge -$  is just in balance with the $ value 
of the vector representation of the group SO(2) of the vortex, seen from the ordinary 
SO(2) group. In fact, this balancing is ostensible in the very first discussion of the 
fermion charge fractionation by Jackiw and Schrieffer (198 1). 
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